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Problem Statement Diagnostic Strategy Results
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* Adifference in the decay time can be seen in the 100nm and 500nm ACF curves above.
* The ACF curve distinguishes the size of a particle using the decay time, the difference in amplitudes of
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Dynamic Light Scattering
Dynamic Light Scattering is a laser-based optic technique that can J/\

be used to determine the size of nanoparticles in solution

Methodology: For convenience of use, the detector is powered via USB, allowing a computer or portable battery to the curve does not influence the particle size estimation.
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Goals Target Solution
Speed: Needs to be fast enough to prevent dataloss UART @ 6 MBaud, each data point is 2 16-bit ints, additional 2 Data collection @ 4.05kHz / 1 data point per 250 ps DEPARTMENT
control bits per int, means max speed = 1 data point every 7 ps. Autocorrelation @ 2.63MHz /1 data point per 0.38 us
Speed sufficient currently unknown. Combined collection and processing @ 4.05kHz / 1 data point per 250 s OF h
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Cros§-platfor-m: Needs to be. capable of operating on  Capable of running on Windows and Mac OS, with acceptable Java 8 platfor.m chosen, §gparate drivers for different OSs. Undergoing tests OL GE ENGINEER[NG for strategic partnerships
multiple devices and operating systems speeds on at least 3 devices. for cross-device compatibility. ® and applied research




