Development of a Low-Cost Photon Correlation System for Measuring HIV-I Viral Load

The Macha Hospital in Zambia requires an HIV viral load test that

Problem Statement

An HIV positive infant will spend over \$3,600 in a

Low Cost: less than \$10 per test

lifetime for viral load tests alone.

- Quick: Under I hour
- Accurate: Sensitivity of 1000 viruses/ml

Zambia

A viral load test requires the detection of activated complexes through the use of dynamic light scattering, data acquisition and signal processing.

Dynamic Light Scattering

Dynamic Light Scattering is a laser-based optic technique that can be used to determine the size of nanoparticles in solution Methodology:

- (I) Laser beam projects onto a sample containing nanoparticles
- (2) Particles within the sample scatter light
- (3) The fluctuations in the intensity of scattered light are related to the size of particles in the solution.

Above: Dynamic light scattering concept. Laser projected into sample scatters off of nanoparticles, which is detected with optics and a photon detector. Image courtesy of LSInstruments

Data Processing Requirements

Goals

Speed: Needs to be fast enough to prevent data loss

Target

UART @ 6 MBaud, each data point is 2 16-bit ints, control bits per int, means max speed = 1 data poi Speed sufficient currently unknown.

Cross-platform: Needs to be capable of operating on multiple devices and operating systems

Capable of running on Windows and Mac OS, with speeds on at least 3 devices.

Caleb Bornman, Nathan Chan, Lily Gaudreau

Diagnostic Strategy

The following Diagnostic Strategy has been proposed for HIV viral load Determination:

Complex detection involves dynamic light scattering (DLS). A fiber optic output from DLS is fed into signal processing circuitry, converting photon events into time stamps to be processed by a computer. A real-time autocorrelation function provides a measure of viral aggregates, allowing medical professionals to get an immediate HIV viral load count determination.

Detection Circuitry and Processing

Small Signal From SiPM

For convenience of use, the detector is powered via USB, allowing a computer or portable battery to run the detection system. USB voltage often has a noisy output, and for high frequency applications this must be filtered out to provide consistent power to each component.

DLS to Data Collection:

- Photomultiplier chip senses photon events from DLS fiber optic
- Signal is amplified x100
- Discriminator compares amplitude of signal to threshold voltage
- If signal < threshold: Low If signal > threshold: High
- CMOS output sent to FPGA for data acquisition

	Solution	
, additional 2 int every 7 μs.	Data collection @ 4.05kHz / 1 data point per 250 μs Autocorrelation @ 2.63MHz / 1 data point per 0.38 μs Combined collection and processing @ 4.05kHz / 1 data point per 250 μs	
h acceptable	Java 8 platform chosen, separate drivers for different OSs. Undergoing tests for cross-device compatibility.	

