Pico Hydro: Powering Developing Communities with Run-of-Stream Hydroelectricity

Tyler Criddle Daniel Loefstedt Joshua Pardoe

Mission Statement

We believe that all people deserve an opportunity to pursue financial prosperity for themselves and their families. We believe smallscale hydro can bring jobs and economic prosperity to underdeveloped communities.

What is the Problem?

The lack of renewable and affordable electric power in small, off-grid communities in the developing world limits both educational and economic opportunities. This makes it difficult for people to flourish and for these communities to prosper.

According to a 2016 study, there are roughly 1.7 billion people on earth without access to electricity, most of them living in developing countries. This is nearly 23% of the human population!

A S

1	Water Passage	Direct Flow (Vs = Stream Velocity)
2	Turbine	Capture Hydrokinetic Energy (KE -> Torque)
3	Generator	Generate Electricity (Torque -> EE)
4	Transformer	Charge Controller / Shunt Load Regulator (Variable -> Controlled Output)
5	Data Collection	Measuring and Analyzing Variables

Why Hydro?

Advantages of Pico-Hydro over other forms of alternative energy:

- 24/7 year-round power generation
- Predictable source of energy production
- Cost-effective, low-maintenance systems
- Little to no environmental impact

J.C

Engineering Ministries International (EMI)

Engineering Ministries International (EMI)

EMI is a non-profit organization that seeks to serve the global Church to glorify God through design, discipleship and diversity.

Mission: To develop people, design structures, and construct facilities which serve communities and the Church.

Since 1982: 1000+ projects in 90 countries

W.E.D.G.E.

Water Energy Device for Generating Electricity

Project Goals

- Test WEDGE prototypes (1.0, 2.0, and 3.0) in the Yellow Breeches Creek and "in-house" to evaluate performance and identify design improvements.
- Construct and deliver a final design for an optimized, field-tested prototype (WEDGE 4.0) that meets EMI's design specifications

JO A

WEDGE 3.0

WEDGE 1.1

W.E.D.G.E 2.0

- Came with a data collection system that needed to be trouble shooted.
- Main question was how to get the data collection system to work.
- Problems solved by :
 - Using an external battery pack attached to the data collection system
- Reasons for Data Collection:
 - Comparison of shaft RPM to Power production
 - Comparison of stream flow speed to shaft RPM
- Future of Data Collection:
 - New system that incorporates more transferable (to excel) data collection method

W.E.D.G.E 3.0

- Tested the existing WEDGE 3.0 design in order to get a better understanding of our production capabilities.
- This involved draining a battery using a resistor bank, like the one pictured, and then hooking it up to the WEDGE 3.0 while it was submerged in the Yellow Breeches.
- Purpose of testing was to provide us with information about the outputs of our machine.

W.E.D.G.E 3.0 Cont.

- Continued testing on the alternator attached to the WEDGE 3.0 by constructing a controlled testing method.
- Used a DC motor and a DC power supply in order to control the voltage to our motor and therefore find the power output of our machine.
- This was tested together using a constructed testing rig, as shown on the right following a testing schematic (also shown right).

WEDGE 4.0

- Applies knowledge from the 3 EMI prototypes
- Specifications

-Safe

- -300-800W of power generation
- -Able to be run constantly
- -Last at least 3 years
- –Cost less than \$500 or an efficiency of less than \$.08/Watt
- -Easy to install, move, and maintain

Water Passage

- Water Passage can be broken up into 2 categories
 - -Hydraulic Profile
 - -Anchoring
- Design Factors
 - -Materials
 - –Size
 - –Cost
 - -Durability
 - -Portability

Main Body

- PVC material
 - -Smooth surface
 - -Standardized connections
- 10in diameter pipe
 - Compatible with a majority of Propellers
 - Cost effective
 - 36in long

-Space for shaft to exit the hydraulic profile

-Long enough to help flow

Entrance Funnel

 Goal of the funnel is to guide as much volume of water into the turbine propeller as gently as possible to avoid head losses due to turbulence.

Exit Funnel

- Split PVC design
- 2:1 ratio of cross-sectional areas
- Angled 10^o from centerline
- 26.89in axial length
- Maintain flow immediately after the turbine

Current Design

for strategic partnerships and applied research

Current Design

19

Future Work

- Finalize the housing design

 Both hydraulic profile and anchorage
 Build and test prototype of new design
- Determine most efficient propeller/turbine
- Choose the appropriate shaft
- Select generator based on performance from the rest of the system.
- Create system to store/utilize power generated

Questions?

