PICO HYDRO **POWERING DEVELOPING COMMUNITIES WITH RUN-OF-STREAM HYDROELECTRICITY Created by: Jonathan Rogers**

The Problem

The lack of renewable and affordable electric power in small, off-grid communities in the developing world limits both educational and economic opportunities, making it difficult for people to flourish and the communities to prosper.

Mission

We believe that all people deserve an opportunity to pursue financial prosperity for themselves and their families. We believe that small-scale hydro can bring jobs and economic prosperity to underdeveloped communities.

Goals

Construct a final design for an optimized, field-tested prototype (WEDGE 4.0) that meets EMI's design specifications and serves as a battery charging station.

Partner

Engineering Ministries International . . . designing a world of hope

Specifications

- Power output: 300-800W
- Usage rate: 24hrs/day
- . Lifetime: minimum 3 years
- Total Cost: maximum \$500
- Materials: locally sourced

Overview

1	Water Passage	Direct Flow (Vs = Stream Velocity)	
2	Turbine	Capture Hydrokinetic Energy (KE -> Torque)	
3	Generator	Generate Electricity (Torque -> EE)	
4	Transformer	Charge Controller / Shunt Load Regulator (Variable -> Controlled Output)	
5	Data Collection	Measuring and Analyzing Variables	

Acknowledgements

Andy Breighner—Project Manager: Voith Hydro Contact: breighner.a@gmail.com David Vader—Faculty Advisor: Messiah College Contact: dvader@messiah.edu Wil Kirchner—Client: EMI Donald Sternitzke—Professional Consultant: Inventor WEDGE Dan Elliot—Professional Consultant: Retired Dereck Plante—Collaboratory Consultant: Messiah College

DEPARTMENT

OF ENGINEERING

Work in Progress

Electrical – Analyzing battery charge and discharge cycles, charge controllers, and alternator performance

- Cost
- . Materially availability
- Optimized efficiency
- Durability
- . Transportability

are longth 44'	Sale: H1 2"	Top Vie
		36"
		۲ ا ^م
		Ø10/
R.	ម្យ ^ព	* /
		-

Project History

EMI testing, Colorado mountains: WEDGE 2.0

Pico-Hydro testing, Yellow Breaches PA: WEDGE 3.0

