A Working Model to Demonstrate Combined Cooling, Heating, and Power

Mitch Kauffman
Ethan Jacoby
Nathan Musser
Tim Mast
Technology Spotlight: Combined Cooling, Heating, and Power

Messiah College: Committed to Sustainability

“…Preparation for lives of service, leadership and reconciliation…”
Messiah’s CCHP Installation

- Frey Hall: Hot water and chilled water
- Eisenhower Campus Center & Sollenberger Sports Center: Electricity, hot water, and chilled water
- Kline Hall & Jordan Science Center: Hot water and chilled water
Designing the CCHP Educational Experience

Requirements:

- **Heat source:**
 - Gas-electric generator

- **User interfaces:**
 - Hot water
 - Hot air
 - Refrigeration
Thermodynamics
Generator Analysis

- Known:
 - 1800 Watt

- Assumptions:
 - Generators are approximately 35 percent efficient
 - 30 percent of total power is exhaust heat
 - Output temperature of generator is 1200 degrees F
 - Pressure drop through system is small
Heat Exchanger - Heating Water Analysis

- **Known:**
 - Entering exhaust temperature
 - Flow rate of exhaust

- **Assumptions:**
 - Water starts at room temperature
 - Leaving exhaust temperature
 - Water flow rate

- **Estimate:**
 - 113°F water output
Absorption Refrigeration

- **Condenser**
- **Evaporator**
 - Heat Absorbed
- **Absorber**
 - Refrigerant dissolves in water
 - Hydrogen returns to top of unit
 - Refrigerant-water solution cools and refrigerant liquefies
- **Boiler**
 - Start of Cycle
- **Hydrogen & Vaporized Refrigerant**
- **Pressure Drop**
- **Liquid Refrigerant**
- **Water & Liquid Refrigerant**
- **Refrigerant Vapor**
Absorption Chiller Heat Exchanger Analysis

- Known:
 - Surface temperature: 620°F
 - Power rating: 65W

- Assumptions:
 - Uniform gas stream temperature

- Estimate:
 - 450°F required exhaust temperature
Heat Exchanger- Heating Air Analysis

• Known:
 • Entering exhaust temperature
 • Mass flow rate of exhaust

• Assumptions:
 • Air has ideal gas properties
 • Air starts at room temperature
 • Mass flow rate of air
 • Leaving exhaust temperature

• Estimate:
 • 200°F air output
Heat Exchanger Fabrication
Heating Water

Concept

Prototype

Final Version
Heating Air
Heating Air
Absorption Chiller Fabrication
Interconnections
Validation
Integration
Interfaces
Final Insulation
Thermocouples and Displays

Type K Thermocouple Range: -454 to 2300F (-270 to 1260C)
Each part of our design functioned properly

- Water went from 69°F to 110°F at a flow rate of 10 mL/s
- Absorption chiller reached 40°F
- Air temperature reached 220°F
Acknowledgements

Dr. David Vader – for his help as a faculty advisor
Dr. Timothy Whitmoyer – for his help as a faculty advisor
Mr. Brian Seip – for his help as a professional advisor
Gary Fechter and UGI Performance Solutions – for their technical assistance and sponsorship
Kathie Shafer – for her vision that made the project possible